Details

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Sofosbuvir (SOF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Name</td>
<td>Sovaldi®</td>
</tr>
<tr>
<td>Class</td>
<td>NS5B nucleotide polymerase inhibitor</td>
</tr>
<tr>
<td>Molecular Weight</td>
<td>529.45</td>
</tr>
<tr>
<td>Structure</td>
<td></td>
</tr>
</tbody>
</table>

Summary of Key Pharmacokinetic Parameters

Following oral administration of sofosbuvir, the majority (>90%) of systemic drug exposure is as GS-331007, which is phosphorylated to the active triphosphate catabolite. GS-331007 is considered the primary analyte of interest for purposes of PK analyses.

Linearity/non-linearity
Sofosbuvir and GS-331007 AUCs are near dose proportional over the dose range of 200-400 mg.

Plasma Half life
0.4 h (sofosbuvir); 27 h (GS-331007)

Cmax
603 (47) ng/ml (sofosbuvir); 1378 (19) ng/ml (GS-331007) [1]
[Data are mean (CV%) obtained with sofosbuvir 400 mg once daily in HCV-infected subjects (n=8) from the control arm of the hepatic impairment study.]

Cmin
Cmin of sofosbuvir or GS-331007 is not a key PK parameter for either safety or efficacy.

AUC
1010 ng.h/ml (sofosbuvir); 7200 ng.h/ml (GS-331007) [Based on population pharmacokinetic analysis in subjects with genotypes 1 to 6 HCV infection (n=986)].

828 ng.h/ml (sofosbuvir); 6790 ng.h/ml (GS-331007) [Geometric mean based on population pharmacokinetic analysis in subjects with genotypes 1 to 6 HCV infection (n=1695)].

Interindividual Variation
Not determined

Bioavailability
Not determined

Absorption
Relative to fasting conditions, the administration of a single dose of sofosbuvir with a standardised high fat meal slowed the rate of absorption of sofosbuvir. The extent of absorption of sofosbuvir was increased approximately 1.8-fold, with little effect on peak concentration. The exposure to GS-331007 was not altered in the presence of a high-fat meal.

Protein Binding
85% (sofosbuvir); protein binding of GS-331007 is minimal.

Volume of Distribution
Not determined

CSF:Plasma ratio
Not determined

Semen:Plasma ratio
Not determined

Renal Clearance
~80% excreted in the urine (78% as GS-331007, 3.5% as sofosbuvir)

Renal Impairment
No dose adjustment of sofosbuvir is required for patients with mild or moderate renal impairment. Safety data are limited in patients with severe renal impairment [estimated glomerular filtration rate (eGFR) <30 mL/min/1.73 m²] or end stage renal disease (ESRD) requiring haemodialysis. Sofosbuvir can be used in these patients with no dosage adjustment when no other treatment options are available.
Hepatic Impairment

No dose adjustment of sofosbuvir is warranted in mild, moderate or severe hepatic impairment. Population pharmacokinetics analysis in adult HCV-infected patients indicated that cirrhosis had no clinically relevant effect on the exposure to sofosbuvir and GS-331007.

Metabolism and Distribution

Metabolised by

No evidence of CYP450 or UGT mediated metabolism of sofosbuvir or GS-331007. Sofosbuvir is metabolised by human cathepsin A (CatA), carboxylesterase 1 (CES1) and histidine triad nucleotide-binding protein 1 (Hint1). The active triphosphate is formed with stepwise phosphorylation by UMP-CMP kinase and NDP kinase.\(^2\)

Inducer of

Sofosbuvir and GS-331007 are not inducers of CYP450, UGT1A1 or drug transporters (P-gp, BCRP, OATP1B1, OATP1B3, OCT1, and BSEP).\(^2\)

Inhibitor of

Sofosbuvir and GS-331007 are not inhibitors of CYP450, UGT1A1 or drug transporters (P-gp, BCRP, OATP1B1, OATP1B3, OCT1, and BSEP).\(^2\)

GS-331007 showed no inhibition of the renal transporters OAT1, OAT3, OCT2, and MATE1.\(^2\)

Transported by

Sofosbuvir, but not GS-331007, is a substrate of P-gp and BCRP.

References

Unless otherwise stated (see below), information is from:

Sovaldi® Summary of Product Characteristics, Gilead Sciences Ltd.

Sovaldi® US Prescribing Information, Gilead Sciences.

2. Mathias A. 14\(^{th}\) International Workshop on Clinical Pharmacology of HIV Therapy, Session 5